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Abstract. Optimal design, parameter estimation, and inverse problems
arising in the modeling of semiconductor devices lead to optimization
problems constrained by systems of PDEs. We study the impact of dif-
ferent state equation discretizations on optimization problems whose ob-
jective functionals involve flux terms. Galerkin methods, in which the
flux is a derived quantity, are compared with mixed Galerkin discretiza-
tions where the flux is approximated directly. Our results show that the
latter approach leads to more robust and accurate solutions of the op-
timization problem, especially for highly heterogeneous materials with
large jumps in material properties.

1 Introduction

Common objectives in the modeling of semiconductor devices are, e.g., to control
the current flow over a contact by changing the so called doping profile of the
device (optimal design problem), or to characterize an unknown doping profile
based on measurements of the current flow (inverse problem).

In either case, the resulting PDE constrained optimization problems call for
objective functionals that involve flux terms in their definition. Depending on
whether the state equation is discretized by a Galerkin or a mixed Galerkin
method, flux terms can have fundamentally different representations. For in-
stance, the Galerkin method approximates the scalar concentration variables by
finite element subspaces of H1(Ω), and the flux is a derived quantity, while in
the mixed method the flux is approximated directly by subspaces of H(div, Ω).

While numerical solution of optimization problems arising in semiconductor
device modeling has been previously addressed in the literature [1, 2], there are
virtually no studies on how discretization choices impact the accuracy and the
robustness of the numerical approximation. To a degree, our work is motivated by
earlier studies [3, 4] of optimization problems governed by advection-dominated
PDEs, which showed that stabilization of the state equations and stabilization
of the optimality system yield different solutions of the optimization problem.
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under contract DE-
AC04-94-AL85000.
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However, in contrast to these papers, our main focus is on how different discrete
formulations of the state equation may affect the optimization problem.

Our report is organized as follows. The model optimization problem is de-
scribed in Section 2. Section 3 states the Galerkin and mixed Galerkin discretiza-
tions of the optimization problem (1). Numerical results contrasting these meth-
ods, and a discussion of the results, are presented in Section 4.

2 Model Optimization Problem

A common objective in the design of semiconductor devices is to match the
current J measured at a portion Γo of the Dirichlet boundary (see Fig. 1) to
a prescribed value Ĵ , while allowing for “small” (controlled) deviations of the
doping profile u from a reference doping profile û. For a complete formulation
of such optimization problems, constrained by the drift-diffusion semiconductor
equations, we refer to [1, 2, 5].

The primary goal of this work is to study how different discretizations of the
state equations impact the solution of the optimization problem. This question
can be investigated on a much simpler model, and so, we restrict our attention
to the following linear–quadratic elliptic optimization1 problem,

minimize
1
2
‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω (1a)

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω (1b)
y(x) = yD(x) on ΓD (1c)

(k(x)∇y(x)) · ν = g(x) on ΓN , (1d)

where α, k(x) > 0, Ω ⊂ Rd, d = 1, 2, 3 is a bounded domain, and ΓD, ΓN are the
Dirichlet and Neumann parts of ∂Ω. We assume that ΓD 6= ∅ and ΓN = ∂Ω/ΓD.
Model (1) follows from the full problem considered in [5] by assuming that the
electron and hole densities are given functions.

3 Discretization of the Optimization Problem

We consider two discretizations of (1) that differ by their choice of finite element
methods for the state equation. In each case we discuss computation of the flux
terms in the objective functional, necessary to complete the discretization of the
optimization problem.

For more details regarding the solution of the discrete optimization problem,
or the existence and uniqueness of optimal solutions of (1) we refer to [1, 2, 5].
1 As it is customary in the optimal control context, we refer to the variables y(x) in

(1) as the state variables, whereas the doping profile u(x) will play the role of the
control variables. Equation (1b) is known as the state equation. Additionally, we will
often abbreviate y(x), u(x), etc., by y, u, etc.
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3.1 Galerkin Discretization

We define the state and control spaces Y =
{
y ∈ H1(Ω) : y = yD on ΓD

}
, U =

L2(Ω), and the space of test functions V0 =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
. The

weak form of (1) is to find y ∈ Y, u ∈ U , which solve the problem

minimize
1
2
‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω (2a)

subject to
a(y, v) + b(u, v) = (f, v) + 〈g, v〉ΓN

, ∀v ∈ V0 (2b)

where 〈·, ·〉? denotes the duality pairing between H−1/2(?) and H1/2(?), and

a(y, v) =
∫

Ω

k∇y · ∇v dx, b(u, v) = −
∫

Ω

uv dx, (f, v) =
∫

Ω

fv dx .

The finite element discretization of the state equation is obtained in the usual
manner by restricting (2b) to finite element subspaces Yh ⊂ Y , V0,h ⊂ V0 and
Uh ⊂ U of the state, test, and control spaces, respectively.

When using a Galerkin method for the state equation, discretization of the
objective functional (2a) requires additional attention, because the flux ∇y · ν
appearing in (2a) is not approximated directly by the method. A standard ap-
proach to discretizing the flux term ‖∇y · ν−∇ŷ · ν‖2−1/2,Γo

would be to restrict
it to the finite element space Yh for the states, and then use a weighted L2 norm
to approximate the norm on H−1/2(Γo):

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖∇yh · ν −∇ŷh · ν‖20,Γo

. (3)

While this discretization of the flux term is consistent, in the sense that every
instance of the state y in the optimization problem is approximated by the same
finite element basis, it may not be the best possible choice for this term. This
is certainly true if the state equation is solved separately and ∇yh is used to
approximate the flux.

It is well-known that a more accurate flux approximation can be obtained by
postprocessing the finite element solution, instead of simply taking its deriva-
tive. One such technique is the variational flux approximation (VFA) [6–9]. It is
based on the Green’s formula and has been applied to optimization problems by
Berggren et. al. in [10]. In the VFA approach, the standard flux∇yh ·ν is replaced
by a more accurate, C0 approximation λh, obtained by solving the equation∫

Γ0

λhvh dl = k−1

(
a(yh, vh) + b(uh, vh)− (f, vh)−

∫
Γ\Γo

k∇yh · νvh dl

)
. (4)

Using VFA we approximate the flux term as follows:

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖λh − λ̂h‖20,Γo

, (5)

For implementation details of VFA we refer to the above papers.
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Remark 1. The use of VFA in our optimization problem differs substantially
from its use as a postprocessing technique and in the optimization problem of
[10]. When (4) is used to postprocess a given finite element solution (yh, uh), the
right hand side in (4) involves only known quantities. In [10], VFA is used in an
already defined optimality system to improve the accuracy of the solution. In
contrast, in our case, the VFA approximation changes the optimization problem,
because the discretization of ‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

by (5) makes this term a
function of both the unknown state yh and the unknown control uh.

3.2 Mixed Galerkin Discretization

A mixed Galerkin method for the state equation is defined by using its equivalent
first-order system form{

∇ · p + u = −f in Ω

k−1 p−∇y = 0 in Ω
and

y = yD on ΓD

(k∇y) · ν = g on ΓN .
(6)

For the variational formulation of the optimization problem, we introduce2

the state spaces Y = L2(Ω) and P = Hg,N (div, Ω), the control space U = L2(Ω),
and the trial spaces V = L2(Ω) and Q0 = H0,N (div, Ω). To simplify the notation
we write p̂ = k ∇ŷ. The weak form of (1), using the mixed Galerkin discretization
of (6), is to find y ∈ Y, p ∈ P, u ∈ U , which solve the problem

minimize
1
2
‖k−2(p · ν − p̂ · ν)‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω , (7a)

subject to
a(p, q) + b(q, y) = 〈yd, q · ν〉ΓD

∀q ∈ Q0

b(p, v) + c(u, v) = − (f, v) ∀v ∈ V,
(7b)

where (·, ·), and 〈·, ·〉? were defined in Sec. 3.1, and

a(p, q) =
∫

Ω

k−1 p · q dx, b(q, y) =
∫

Ω

(∇ · q)y dx, c(u, v) =
∫

Ω

uv dx.

The mixed finite element discretization of the state equation follows by re-
stricting (7b) to finite element subspaces Yh ⊂ Y , Ph ⊂ P , Uh ⊂ U , Vh ⊂ V , and
Q0,h ⊂ Q0, for the states, controls, and the respective test functions in (7b). We
recall that the pairs (Yh, Ph) and (Q0,h, Vh) are subject to an inf-sup stability
condition [11].

In contrast to the Galerkin approach in Sec. 3.1, in the mixed method the
flux is approximated directly by ph. As a result, the flux term in the objective
functional can be discretized as follows:

‖k−2(p · ν − p̂ · ν)‖2−1/2,Γo
≈ h‖k−2(ph · ν − p̂h · ν‖20,Γo

. (8)

2 We recall that H(div, Ω) =
n

q ∈
ˆ
L2(Ω)

˜2
: ∇ · q ∈ L2(Ω)

o
; H0,N (div, Ω) is the

subspace of all fields in H(div, Ω) whose normal component vanishes on ΓN , and
Hg,N (div, Ω) are the fields in H(div, Ω) whose normal component on ΓN equals g.
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contacts of the device and are given by

yD(x) = Y (x) + YT ln

(
nD(x)

ni

)
on ΓD

nD(x) =
1

2

(
u(x) +

√
u2(x) + 4n2

i

)
on ΓD

pD(x) =
1

2

(
−u(x) +

√
u2(x) + 4n2

i

)
on ΓD,

where Y (x) is the applied voltage, YT is the thermal voltage, and ni is the intrinsic
density.

A common objective in the design of semiconductor devices is to match the current
J measured at a portion Γo of the Dirichlet boundary (see Figure 1.1) to a prescribed
value Ĵ , while allowing for “small” (controlled) deviations of the doping profile u from
a reference doping profile û. Thus we minimize the objective functional

J (n, p, y, u) =
1

2

∫

Γo

(J(x) · ν − Ĵ(x) · ν)2dx +
α

2

∫

Ω

(u(x)− û(x))2dx. (1.2)

where the parameter α > 0 controls the size of the deviation of u from û. Similarly,
one can attempt to characterize an unknown doping profile u based on a measurement
Ĵ of the current across Γo, which amounts to minimizing the functional

J ′(n, p, y, u) =
1

2

∫

Γo

(J(x) · ν − Ĵj(x) · ν)2dx +
α

2

∫

Ω

u2(x)dx, (1.3)

where α > 0 acts as a regularization parameter.

ΓN

ΓN

ΓN

Γo ΓDΓD

Figure 1.1: A Simple Problem Domain Ω.

While the primary object of this study is the solution of the problem

minimize J (n, p, y, u) (1.4a)
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4.2 Numerical Examples

In this section we present several numerical examples contrasting the Galerkin and
mixed Galerkin methods.

We are solving problem (1.5), which we restate here for convenience:

minimize
1

2

∫

Γo

(∇y(x) · ν −∇ŷ(x) · ν)2dx +
α

2

∫

Ω

(u(x)− û(x))2dx

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω

y(x) = yD(x) on ΓD

(k(x)∇y(x)) · ν = g(x) on ΓN .

The computational domain Ω is the [−1, 1] × [−1, 1] square. We use a a regular
triangulation, obtained by subdividing the domain in smaller squares, each of which
is split into two triangles, as shown in Figure 4.1. For all numerical experiments, we
use a 32× 32 mesh containing 2048 triangles, 1082 vertices, and 3136 edges.

ΓN

ΓN

ΓN

Γo ΓDΓD

Figure 4.1: Computational Domain.

The Neumann boundary ΓN is given by the segments {−1}× [−1, 1], {1}× [−1, 1],
and [−1, 1] × {−1}. The Dirichlet boundary ΓD is given by [−1,−0.25] × {1} and
[0.25, 1] × {1} (for the solution of the PDE, we use [−1, 1] × {1} as the Dirichlet
boundary). The flux boundary Γo is given by the segment [−0.25, 0.25]× {1}.

In the following numerical examples, the most distinguishing characteristic are
the differences in the corresponding diffusivity (i.e. permittivity, in the case of semi-
conductors) profiles k(x). They can be related to the doping profiles via a scaling of
the equation (1.5b) by 1/k(x), assuming that k(x) is piecewise constant. Our goal is
to determine which of the two schemes generates consistent numerical results across
several diffusivity patterns, see Figure 4.2.

21

Fig. 1. Computational domain (left) and its partition into finite elements (right plot).

Example 1 Example 2

GM Mixed GM-VFA GM Mixed GM-VFA

JF 1.99e-06 1.88e-06 1.95e-04 6.42e-09 2.51e-09 2.70e-09

Ju 1.10e-08 1.10e-08 3.81e-07 1.12e-03 1.08e-03 1.11e-03

J 2.00e-06 1.89e-06 1.95e-04 1.12e-03 1.08e-03 1.11e-03

Example 3 Example 4

GM Mixed GM-VFA GM Mixed GM-VFA

JF 6.07e-05 8.10e-10 2.83e-07 1.06e+01 2.56e-07 6.29e-07

Ju 7.17e-05 4.62e-05 4.50e-03 3.63e+00 4.57e-03 7.19e-03

J 1.32e-04 4.62e-05 4.50e-03 1.42e+01 4.57e-03 7.19e-03

Table 1. JF , Ju and J denote the values of the flux term, the control term and their
sum (the total value of the objective functional).

4 Numerical Results

The computational domain Ω = [−1, 1]2, its finite element partition, and the
boundary part Γo are shown in Fig. 1. All numerical results were obtained on
a 32 × 32 mesh with 2048 triangles, 1082 vertices, and 3136 edges. For the
Galerkin method in Sec. 3.1, we use standard C0, piecewise linear approximation
spaces. The mixed Galerkin method for the state equation was implemented
using the lowest order Raviart-Thomas element for ph and piecewise constant
finite elements for yh.

In the examples below we compare finite element solutions of the optimiza-
tion problem using the standard Galerkin method, the Galerkin method with
VFA, and the mixed method. The most distinguishing characteristic of the ex-
amples used in our study are the differences in the corresponding diffusivity (i.e.
permittivity, in the case of semiconductors) profiles k(x). For all examples we
use f(x) = 0, yD = 0, û = 1, and α = 6.25 · 10−4. The Neumann data g is set to
0 on the left and right sides of Ω and to −k(x) on the bottom.

Example 1. The desired flux is ∇ŷ · ν = 1 and k(x) = 102 in Ω.
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Example 2. The desired flux is ∇ŷ · ν = 1 and k(x) = 10−2 in Ω.
Example 3. The desired flux is ∇ŷ · ν = 1 and

k(x) =


10 in [−1,−0.25]× [−1, 1]
10−2 in [−0.25, 0.25]× [−1, 1]
10 in [0.25, 1]× [−1, 1],

Example 4. The desired flux is ∇ŷ · ν = 100 and k(x) is as in Ex. 3.

Objective functional values for the four examples are summarized in Table
1. The data for Ex. 1-2 shows that for constant k(x) all three discretizations
perform at a comparable level. Nevertheless, the mixed Galerkin method does
consistently outperform the other two discretizations, albeit by a small margin.
We also observe that the VFA approach gives better results (i.e., closer to the
mixed Galerkin results) for k(x) � 1, while the standard flux approximation
does better for k(x) � 1.

The data for Ex. 3-4 shows a completely different situation, as far as the
standard flux approximation is concerned. For these two examples the mixed
Galerkin method clearly outperforms the standard Galerkin discretization of
the optimization problem, especially when the desired flux value is large, as in
Ex. 4. Using the VFA approach, the Galerkin discretization fares better, how-
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Fig. 2. Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row) and
optimal controls (bottom row) for Ex. 3.

ever, the objective functional values remain less accurate than those computed
with the mixed method. These observations are also confirmed by the plots in
Fig. 2-3. We see that for Example 4 the states and controls computed by the
standard Galerkin method are grossly inaccurate. We also note that among all
three methods the controls computed by the mixed method exhibit the most
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Fig. 3. Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row) and
optimal controls (bottom row) for Ex. 4.

robust behavior. An interesting feature of the controls for the VFA approach is
their oscillatory nature. This could be a problem in some specific applications
where the controls have to be implemented in real materials.

Based on the numerical data, we can conclude that for problems with hetero-
geneous material properties the mixed Galerkin method offers the most robust
performance and the most accurate results. The worst performer is the stan-
dard Galerkin method, which may yield state and control approximations that
are many orders of magnitude less accurate than those computed by the mixed
method. Thus, we cannot recommend the standard Galerkin discretization as a
reliable approach to solving optimization problems whose objective functionals
involve flux terms. Instead, for such problems, one should use the mixed Galerkin
discretization whenever possible. If, for whatever reason, the use of the mixed
method is not feasible, then the Galerkin discretization of the state equations
should be combined with the VFA approach in order to improve robustness and
accuracy.
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[6] Babuška, I., Miller, A.: The post processing approach in the finite ele-
ment method, part 1: calculation of displacements, stresses and other higher
derivatives of the displacements. Internat. J. Numer. Methods. Engrg Vol.
34 (1984) 1085–1109
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